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Abstract. Active virtual machine introspection mechanisms intercept
the control flow of a virtual machine running on top of a hypervisor.
They enable external tools to monitor and inspect the state at predeter-
mined locations of interest synchronous to the execution of the system.
Such mechanisms, in particular, require support from the processor ven-
dor by facilitating interpositioning. This support is missing on AMD
x86 processors, leading to inferior introspection solutions. We outline
implicit assumptions about active introspection mechanisms in previous
work, offer constructions for solution strategies on AMD systems and
discuss stealthiness and correctness. Finally, we show empirically that
such retrofitted software solutions exhibit performance metrics in the
same order of magnitude as native hardware solutions.
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1 Introduction

Virtual machine introspection (VMI) is a popular approach for monitoring vir-
tual machines (VMs) at the hypervisor level. VMI is desirable for many practi-
cal purposes, including intrusion detection, malware analysis, and main memory
forensics. To perform VMI, we have to provide a monitoring application with
the means to access a target virtual machine’s internal state.

There are two flavors of VMI: active and passive. Passive VMI, or polling
VMI, refers to unsynchronized, read-only access to the virtual machine’s state.
This approach involves periodically polling the virtual machine’s memory and
registers to gather information about its state. Active VMI, or event-based VMI,
involves intercepting the virtual machine’s control flow and executing custom
code in response to specific events. This approach allows for more fine-grained
control over the target virtual machine, but can be more complex to implement.

Significant hardware differences exist between Intel and AMD x86 processors,
which majorly impact the use of active VMI. The usual approaches used by
VMI tools and libraries on Intel processors do not work on AMD processors
due to fundamental differences in their design. Specifically, AMD processors
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support hardware-assisted virtualization through their Secure Virtual Machine
(SVM) extension and enable Second Level Address Translation (SLAT) using
Rapid Virtualization Indexing (RVI). This is different from Intel processors,
which use Virtual Machine Extensions (VT-x) and support SLAT with Extended
Page Tables (EPT). Additionally, while Intel processors have a feature called
the Monitor Trap Flag that simplifies single-stepping a virtual machine, AMD
systems do not offer an equivalent capability.

It is essential to address the current lack of VMI support on AMD processors
to expand the applicability of VMI-based tools. Notably, within the SmartVMI
project3, our objective is the development of VMI toolchains for generating train-
ing data sets for the next generation of VMI-based security tools, and neglecting
AMD platforms as a valuable source of real-system data sets would severely
hinder the generalizability of our outcomes. Therefore, this paper introduces a
software implementation that retrofits missing hardware features onto current
AMD x86 processors, extending their introspection capabilities. Our approach
seamlessly integrates with popular introspection APIs and off-the-shelf hyper-
visors, enabling developers of introspection applications to quickly port their
existing software to AMD systems. Our contributions include the following key
aspects:

1. We analyse two significant architectural differences between Intel and AMD
x86 processors that affect the realization of active introspection mechanisms
taking into account related research.

2. We conceptualize a mechanism that addresses the shortcomings of previ-
ous approaches through retrofitting virtualization features in software. This
mechanism enables virtualized single-stepping on systems that support reg-
ular, non-virtualizable single-stepping.

3. Based on this principle, we develop a proof of concept implementation for the
KVM hypervisor and the LibVMI introspection library, based on KVMi [8].
We publish this implementation as an open source software.

This paper is structured as follows: Section 2 provides background knowl-
edge on VMI. Section 3 summarizes existing work that targets VMI on AMD
processors and highlights their limitations. Section 4 presents our guided single-
stepping approach, including a proof-of-concept implementation using KVMi.
In Section 5, we evaluate the correctness, stealthiness, and performance of our
solution. Finally, Section 6 concludes the paper.

2 Background

In this section, we present relevant background on hardware-assisted virtualiza-
tion for AMD and Intel x86 systems as well as on virtual machine introspection.

3 https://www.smartvmi.org/

https://www.smartvmi.org/
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2.1 Hardware-assisted Virtualization

The predominant approach to system virtualization on x86 is hardware-assisted
virtualization, which was introduced by Intel in 2005 through VT-x / VMX
(Virtual Machine Extensions). This extension featured new processor modes
for virtualization: VMX root mode, used as privileged mode by the hypervisor,
and VMX non-root mode, where the guest system executes in a non-privileged
mode. Our particular interest are context switches from the unprivileged to the
privileged mode, i.e., from the guest virtual machine to the hypervisor, through
traps, refered to as VM exit (the opposite direction, from the hypervisor to the
virtual machine, is called VM entry). The configuration of the virtual machines
running under hardware-assisted virtualization, including VM exit conditions, is
performed in the Virtual Machine Control Structure (VMCS) [16].

AMD processors also support hardware-assisted virtualization since the intro-
duction of the Secure Virtual Machine (SVM) extension4 in 2006. In this exten-
sion, the new processor modes are called host mode (privileged) and guest mode
(unprivileged). The hypervisor configures the hosted virtual machines through
the Virtual Machine Control Block (VMBC) [17].

Starting with the second generation of processor extensions for hardware-
assisted virtualization, the vendors implemented a concept known as Second
Level Address Translation (SLAT). While traditional paging solely translates
logical, virtual addresses to physical addresses, SLAT extends capabilities of the
Memory Management Unit (MMU) by another dimension: The translation of
the physical address within the virtual machine to the physical address on the
host machine. For Intel processors, the SLAT implementation is called Extended
Page Tables (EPT). Intel refers to the top-level paging structure in the guest
that translates from guest virtual addresses (GVA) to guest physical addresses
(GPA) as Page Map Level 4 (PML4). For the new dimension, the corresponding
paging structure is called EPT PML4 and translates from GPA to host physical
addresses (HPA) [5]. The CR3 register references the PML4, while the VMCS
stores the EPT PML4 in the EPT Pointer (EPTP) field.

AMD x86 processors implement SLAT with Rapid Virtualization Indexing
(RVI) or Nested Paging (NP). In this implementation, the guest page tables
(gPT) translate guest linear addresses (GLA) to guest physical addresses (GPA).
For the second level address translation, nested page tables (nPT) are used to
convert GPA to system physical addresses (SPA) [18]. The CR3 register in the
guest is referred to as guest CR3 (gCR3) and holds the reference to the gPT.
The hypervisor loads the nPT value into the nested CR3 (nCR3) field in the
VMBC [1]. Besides completely different terminology, there are also significant
implementation differences between AMD’s RVI and Intel’s EPT.

4 Newer publications refer to the same extension as AMD Virtualization (AMD-
V) [18].
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2.2 Virtual Machine Introspection

Virtual machine introspection is the “approach of inspecting a virtual machine
from the outside for the purpose of analyzing the software running inside it.”
Garfinkel and Rosenblum characterize VMI by three main properties [4]: Iso-
lation (between monitoring and monitored system), introspection (monitoring
software has a full, untampered view of the whole system), and interposition
(interception of operations in the virtual machine).

VMI-based monitoring mechanisms can be categorized as either passive (or
polling), which means they analyze the main memory of the virtual machine
based on external triggers, or as active (or event-triggered), which means they
interposition themselves with the control flow of the virtual machine, e.g., by
placing breakpoints [6]. The active interpositioning allows introspection applica-
tions to perform their introspection task at specific, predetermined locations in
the control flow of applications running inside the guest virtual machine.

In our work, we investigate two forms of active VMI: The first type of in-
trospection mechanism is memory access tracing based on the SLAT feature of
modern processors. For such mechanisms, first, the VMI application modifies the
memory access permissions of a page within the SLAT. Second, accessing these
pages triggers a trap to the hypervisor, which then emits an event to the intro-
spection application. Besides these two basic steps, there are also mechanisms
that involve additional actions, such as creating new views (top-level paging
structures for SLAT) and dynamically switching between these views [9].

The second kind of introspection mechanism involves the use of hyper-single-
stepping functionality. Unlike regular single-stepping, which transfers control to
the guest kernel after each instruction and can be used, e.g., by guest-level de-
buggers, hyper-single-stepping executes a single instruction in the guest and then
traps to the hypervisor, which then can notify the VMI tool. When combined
with a software hyper-breakpoint [14], this mechanism is particularly valuable.
This combination involves replacing an instruction in the guest with a break-
point instruction. Upon reaching this instruction, the guest traps to the hyper-
visor. The VMI tool handles this breakpoint by restoring the original instruction
and activating single-stepping. After the guest executes the original instruction,
the single-step triggers another hypervisor trap and the VMI tool re-inserts the
breakpoint.

3 State of the Art

While VMI is a promising technique for practically any efficiently virtualizable
architecture, current industry and academia work focuses mainly on the x86
architectures. Yet as we have alluded to in earlier parts of this work, there are
several architectural differences between the two main x86 vendors, namely Intel
and AMD, that limit the applicability of previous active introspection research
on AMD processors. These limitations exist because most works in the literature
conducted their development on Intel processors with the Intel VT-x processor
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extensions. Subsequently, we will describe the two main architectural differences
and summarize the state of the art regarding addressing the open problems
arising from them.

3.1 SLAT-based Mechanisms

Zhang and Zonouz have shown that the combination of SLAT controls and events
is suitable for hiding injected code from the guest [20]. By maintaining a set of
complementary paging structures for read/write/execute operations and switch-
ing between them dynamically, it is possible to have a different mapping for
reads to a page compared to an instruction fetch. Hence, injected code practi-
cally becomes invisible to the guest. While their approach used a hypervisor to
perform the code hiding, we do not consider their approach as virtual machine
introspection due to the non-flexible design. Instead, they created the technique
specifically for rootkits.

The first hypervisor to offer support for a wide range of options to manipulate
the SLAT for introspection purposes was Xen with the altp2m mechanism [9].
It allows the introspection application to manage multiple guest-physical to
machine-physical mappings for a single virtual machine, manipulate these map-
pings, switch between them, and directly handle the related events. However, as
of now, altp2m is only available on Intel processors.

Tanda was the first to identify the realization of SLAT memory access per-
missions on AMD processors as an issue regarding implementing the usual code
hiding technique [13]. Whereas Intel EPT allows configuring read, write, and
execute permissions of access to a specific page, AMD RVI merges the read
and execute permissions. Hence, it is not possible to set them separately, which
adversely affects the earlier-mentioned code-hiding technique. Tanda has also
outlined two partial workarounds for this problem. However, when used with
virtual machine introspection, these partial solutions rely on the availability of
hyper-single-stepping, which, as we will see in the following, is also missing.
Furthermore, neither of the approaches he proposed reaches performance char-
acteristics close to utilizing the hardware implementation on Intel.

Therefore, we can conclude that SLAT-based introspection mechanisms on
AMD processors are equally powerful to those on Intel if and only if hyper-
single-stepping is available. Henceforth, this paper will focus on realizing this
requirement and thus provide adequate support for active introspection mecha-
nisms on AMD64.

3.2 Hyper-Single-Stepping

The prevalent way to realize hyper-single-stepping for VMI architectures in en-
vironments based on hardware-assisted virtualization is through virtualized pro-
cessor capabilities. For example, Intel processors feature the Monitor Trap Flag,
which can be set in the VMCS by the hypervisor. When this flag is enabled, the
processor will trigger a VM exit after each execution of an instruction.
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The two most popular open-source hypervisors with VMI support for hyper-
single-stepping – Xen5 [2] and KVMi [8] – employ this functionality. However,
as mentioned earlier, this requires support from the architecture and, ultimately,
the processor vendor. Currently, an equivalent of the Monitor Trap Flag does
not exist on AMD. Hence, the feature is unavailable on AMD processors.

Yet, some debuggers such as GDB [7,19] offer limited single-stepping sup-
port for virtual machines even on AMD. They accomplish this by using the non-
virtualized single-stepping feature of the processor. Therefore, they incur severe
drawbacks: the single-stepping is trivially detectable from within the guest, ma-
licious actors can easily disable the mechanism, and the guest cannot do any
single-stepping on its own. All of these reasons make this approach unsuitable
for VMI, where solutions are bound to be isolated from the guest and stealthy.
The challenges to achieving these properties in an adverse environment are the
topic of this paper.

Finally, Sato et al. discuss ensuring stealthiness and correctness of retrofitted
virtual machine introspection mechanisms [12]. Their work mainly focuses on
retrofitted hardware breakpoints. However, we believe we can draw relevant
lessons for a much broader range of mechanisms, including hyper-single-stepping,
see Section 4.2.

4 Introspection on the AMD64 Architecture

As the realisation of the solutions presented by Tanda [13] rests on the availability
of hyper-single-stepping, and one can implement the outlined approaches at the
level of the introspection application with existing APIs, we focus solely on the
hyper-single-stepping functionality for the remainder of this paper. In our work,
the trust model assumes the hypervisor and the host system, which runs the
VMI application, to be trusted. Furthermore, we consider the hardware and its
firmware to be untampered. All other entities are untrusted. Finally, we assume
that the attacker does not directly attack the hypervisor or other trusted entities,
for example, through VM escapes.

4.1 Design

A naive approach to address the lack of the monitor trap flag on AMD machines
is to emulate instead of virtualizing the instructions in question. The approach
of falling back to emulation when hardware-assisted virtualization is unsuitable
is a common technique for similar problems. Regrettably, it comes with two
significant shortcomings: First, the emulation is often prone to errors due to the
high complexity and heterogeneity of processors. Second, it may sacrifice the
performance gains of efficient virtualization and can therefore slow down the
execution of the virtual machine significantly.
5 https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vm
x/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23
b675eb4eaa2dc091f7bb3039f#l250

https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4eaa2dc091f7bb3039f#l250
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4eaa2dc091f7bb3039f#l250
https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/arch/x86/hvm/vmx/intr.c;h=80bfbb478782446cb17b53004435e41206f993b8;hb=556c2e817c9cf23b675eb4eaa2dc091f7bb3039f#l250
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Fig. 1. Concept of guided single-stepping contextualized with other approaches

Another potential solution is to disassemble the current instruction and in-
sert a hyper-breakpoint directly following this instruction on-the-fly [11]. This
approach reduces the susceptibility to errors compared to the emulation since
the only requirement to execute the strategy is to determine the correct length
of any instruction. However, it still can be considered significantly slower than
virtualization with the monitor trap flag because every single-step now requires
mapping, reading, and length-disassembling the next instruction through VMI.

Instead of these slow and error-prone approaches, we rely on the regular trap
flag in the guest to generate the trap. Then, we elevate this trap to the hypervisor
by configuring the processor to perform exception intercepting on the respective
exception vector [1]. As we will see later, this retrofitting of single-stepping for
introspection applications comes at practically no cost and is resistant to both
errors and malicious insiders.

Figure 1 shows our approach called guided single-stepping alongside single-
stepping and hyper-single-stepping. We refer to it as guided since we guide the
guest’s execution from the outside to avoid manipulation and detection of the
monitoring. Our approach offers a way to realise the benefits of virtual machine
introspection, namely isolation, and interposition, for a single-stepping mech-
anism targeting virtual machines. Hence, it provides the same guarantees as
hyper-single-stepping, even when not explicitly supported by the hardware.

However, an important design decision remains. Like many other introspec-
tion mechanisms, our approach can be implemented at different levels, i.e., in
the hypervisor, an introspection library, or the guest itself. We decided to place
our solution in the hypervisor and the introspection library LibVMI.

Operating at multiple levels in the introspection stack enables a particularly
small footprint: Since our implementation is implemented transparently at the
hypervisor level, existing introspection applications, in general, do not need to
be modified for operation on AMD systems when using guided single-stepping.
As single-stepping in a VMI context is often used only selectively, e.g., to step
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over a single instruction, counterintuitively, an implementation at the level of the
introspection library reduces the overhead. Hence, the introspection application
can determine partial emulation functions ahead of time and potentially even
cache them.

4.2 Implementation

As mentioned in the beginning, our proof-of-concept implementation6 builds
upon the open-source introspection API KVMi based on the KVM hypervisor.
Since it operates at multiple layers in the introspection stack, we will discuss the
challenges and concrete realisation separately for each affected layer.

Hypervisor Layer The core responsibility of the part of our solution that resides
in the hypervisor is to configure the virtual machine such that regular hardware
single-stepping is enabled and the generated traps end up in the hypervisor. In
particular, this requires the following three steps that must occur transactionally
and are started by the KVMI_VCPU_CONTROL_SINGLESTEP command:

1. Exception intercepting must be enabled for the #DB (Debug Exception)
vector. We implement this using the set_exception_intercept helper func-
tion7 during update_bp_intercept.

2. We must save off the original RFLAGS of the vCPU to determine whether
to reinject the exception and to set the trap flag correctly upon exit. Our
solution stores the guest’s RFLAGS within the vcpu_svm struct using the
svm_get_rflags function.

3. Finally, we must force the trap flag on within the guest for the duration of
the guided single-stepping. Our solution performs this manipulation within
__kvm_set_rflags8.

To disable the guided single-stepping after reaching the target instruction,
we have to perform the inverse of these three steps in reverse order. In this case,
we can omit step 2. Enabling and disabling the guided single-stepping is only
possible when the vCPU is currently not running, i.e., it is halted by either an
active mechanism or paused.

After setting up the virtual machine in this way, single-step operations in the
guest trap to the hypervisor. In KVM, they eventually reach the exit handler
called db_interception9. In this handler, we can convert the exception to a
VMI event and send it to the introspection application for further processing.
6 Available at: https://github.com/smartvmi/VMI-on-AMD
7 https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L5
91

8 https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/x86.c#L1
0104

9 https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L2
783

https://github.com/smartvmi/VMI-on-AMD
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L591
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L591
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/x86.c#L10104
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/x86.c#L10104
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L2783
https://elixir.bootlin.com/linux/v5.4.217/source/arch/x86/kvm/svm.c#L2783
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Since our retrofitted approach utilizes the regular trap flag, we need to con-
sider the edge case that the virtual machine itself is already single-stepping, e.g.,
for debugging purposes. To account for this issue, we need to reinject the inter-
rupt into the virtual machine if the trap flag was already set by the guest. Hence,
we have saved the guest’s original value of RFLAGS in step 2. Reinjecting the de-
bug exception is as simple as calling kvm_queue_exception with DB_VECTOR
after delivering the event to the introspection application. Thereby, the operat-
ing system in the guest can correctly handle the single-step on its own.

Our implementation currently does not handle a change to the trap flag in
the guest during single-stepping. This situation can, for example, occur when
a self-debugging program in the guest sets the trap flag on itself to obfuscate
its control flow. Addressing this problem would require sophisticated emulation
at the level of the hypervisor. However, we consider this a niche technique that
remains outside the scope of our current work.

Finally, the single-step may clobber the debug-status register (DR6). As the
processor sets bit 14 of DR6 when a #DB exception occurs due to single-
stepping, the guest could detect this value and conclude that it is being mon-
itored. To avoid this situation, we clear this bit if and only if we have not
reinjected the single-step into the guest.

Application Layer At the level of the introspection library or the application
layer, we will exclusively deal with implementation details that are cheaper to
implement at this level than in the hypervisor. In particular, we apply partial
emulation on top of some critical instructions. As the application, in many cases,
e.g., when using hyper-single-stepping together with hyper-breakpoints, knows
the instruction ahead of time, the resulting overhead can be limited. Not only can
we avoid mapping and reading the page of the currently executed instruction,
but we can also eliminate all superfluous emulation for the statistically dominant
instructions that do not require intervention.

As our retrofitted approach uses the guest’s trap flag to generate the in-
terrupts, malicious insiders could potentially interfere with the monitoring by
manipulating the RFLAGS in the guest. To address this, we guide the execution
in the guest. The instruction we have to worry about the most is the POPF in-
struction that loads new flags from the stack. We manipulate the execution of
this instruction by dynamically rewriting the stack contents upon execution. Be-
fore the guest executes this instruction, we force the trap flag onto the top-most
value on the stack:

1 ACCESS_CONTEXT(ctx ,
2 .translate_mechanism = VMI_TM_PROCESS_DTB ,
3 .addr = event ->x86_regs ->rsp + 8,
4 .pt = event ->x86_regs ->cr3 & ~0 x1000ull);
5
6 uint64 eflags , eflags_new;
7 if (VMI_SUCCESS == vmi_read_64(vmi , &ctx , &eflags))
8 {
9 eflags_new = eflags | X86_EFLAGS_TF;
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10 vmi_write_64(vmi , &ctx , &eflags_new);
11 }

As the value remains on the stack after the execution, we have to write
back the original value after the instruction executes to hide the presence of the
monitoring. To this end, we must account for the fact that this value lies beyond
the stack pointer after the execution of the instruction.

The counterpart to the POPF instruction is the PUSHF instruction. This in-
struction places the flags on top of the stack. As it is also available in user mode,
it is an ideal candidate to detect our monitoring. Again, we can avoid detection
by rewriting the stack after its execution:

1 ACCESS_CONTEXT(ctx ,
2 .translate_mechanism = VMI_TM_PROCESS_DTB ,
3 .addr = event ->x86_regs ->rsp + 8,
4 .pt = event ->x86_regs ->cr3 & ~0 x1000ull);
5
6 uint64 eflags;
7 if (VMI_SUCCESS == vmi_read_64(vmi , &ctx , &eflags))
8 {
9 eflags &= ~X86_EFLAGS_TF;

10 vmi_write_64(vmi , &ctx , &eflags);
11 }

Finally, we have to deal with the CLI instruction that clears the interrupt
flag. With interrupts disabled, the single-stepping mechanisms will no longer
work. Luckily, most modern kernels nowadays are fully or mostly preemptible.
Therefore, we should not encounter this instruction for the most part when
using guided single-stepping. Assuming the execution reaches this instruction,
we propose two different approaches based on where it is located: In case it
occurs in a trusted location, i.e., one of the few places in the kernel that are
not preemptible, we ignore it. If we encounter the instruction in an untrusted
position, i.e., a driver or code not belonging to the kernel image, we propose to
halt the virtual machine for manual inspection.

5 Evaluation

In the following, we assess our guided single-stepping proof-of-concept implemen-
tation regarding its correctness, stealthiness, and performance.

5.1 Correctness

Our work relies on the correctness of the trap flag in the guest and the intercep-
tion of the #DB exception. Since all existing debuggers for the x86 architecture
use the trap flag, we can assume the feature to be working correctly.
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However, there are critical differences to the hyper-single-stepping facilitated
by the monitor trap flag. In particular, the behavior between the two can differ
when delivering interrupts. First, our solution does not yet consider that the trap
flag can be reset from an Interrupt Service Routine (ISR), e.g., through the IRET
instruction. We could address this weakness by applying the flag to the stack
when encountering such an instruction, much like for the PUSHF instruction. Since
most introspection applications use single-stepping selectively, e.g., for stepping
over a single instruction, we currently do not regard this as a problem.

Second, it is theoretically possible to use hardware multitasking to turn off
the trap flag from within the guest. The necessary procedure requires stripping
the flag from the EFLAGS field in the active Task State Segment (TSS). We must
note that this is not possible from long mode since hardware multitasking is
not available in this mode and the TSS only holds the stack pointers and the
Interrupt Stack Table (IST). Therefore, exploiting this weakness would require
the attacker to switch the processor back to protected mode. For this reason,
we consider this possibility very unlikely. However, we could solve this issue by
trapping writes to the EFER (Extended Feature Enable Register) MSR (Model-
specific Register). By checking against a write of 0 to bit 8 (Long Mode Enable),
we can detect this behavior and halt the machine for manual inspection.

What we should note for both cases, however, is that this only disables single-
stepping until the next VM exit since our implementation in the hypervisor
makes sure to reapply the flag before entering the guest.

Finally, all instructions covered in our proof-of-concept implementation are
single-byte instructions (POPF, PUSHF, and CLI). Therefore, we generally do not
require sophisticated disassemblers to identify them accurately from the intro-
spection application. However, a malicious guest could append prefixes such as
the REX prefix to the instruction that does not have any effect, and thus no sen-
sible assembler would generate [1]. Hence, we caution against simply checking
the opcode for security-critical applications.

5.2 Stealthiness

As is the case with many VMI-based systems, our solution is not entirely invis-
ible to the guest. Active introspection can be detected from within the guest in
numerous ways. The most primitive approach that is often present in malware
is the detection of the hypervisor. This detection is possible due to the enforced
isolation, which requires privileged instructions to be emulated [10]. By com-
paring the execution time of these instructions with their native unvirtualized
counterparts, it is easy to determine if the system is currently executing under
virtualization.

However, there are also much more sophisticated methods that not only
can determine the presence of the hypervisor but also ongoing active introspec-
tion [15]. These can include timing attacks on various exit conditions, such as
our interception of the #DB exception. Therefore, our guided single-stepping
approach is detectable from within the guest. However, we should consider that
the same is true for hyper-single-stepping.
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While discussing our implementation, we addressed other detection methods,
such as reading out the trap flag. To verify the effectiveness of these measures, we
attempted to detect the presence of our monitoring with the application shown
below. As expected, our solution can successfully hide the presence of the trap
flag from the guest.

1 uint64_t eflags = __builtin_ia32_readeflags_u64 ();
2 fprintf(stdout , "X86_EFLAGS_TF: %lu\n", !!( eflags &

↪→ X86_EFLAGS_TF));

5.3 Performance

To evaluate the performance of our solution, we use an ASUS PN51 fitted with
an AMD Ryzen 5 5500U Hexa-core CPU, 32 GiB of DDR4-2666 main memory,
and 1 TiB of non-volatile memory on an Kingston A2000 NVMe SSD. We use
Debian 11 for both the host and guest operating systems in our evaluation. The
virtual machine used in the following experiments has 2 GiB of main memory
assigned to it. We take comparative measurements for Intel processors on a ma-
chine with similar characteristics. This machine is an ASUS PN62 equipped with
a Intel Core i7-10510U quad-core CPU, 32 GiB of DDR4-3200 main memory,
and 1 TiB of non-volatile memory on an Kingston A2000 NVMe SSD.

Microbenchmarks. To assess the performance of our retrofitted software solution,
we measure breakpoint and single-stepping performance by placing a breakpoint
on the getpid system call. Upon execution of this breakpoint, we replace it with
the original instruction, single step over it, and restore the breakpoint. We chose
this way of evaluating the performance of our solution because it resembles how
VMI is usually used in real-world applications. We include the source code of this
benchmark in the repository. Our setup measures 1,000 system call invocations
from user mode. We present the results of this measurement with a sample size
of 10 in Figure 2.
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Fig. 2. Execution time with breakpoint on __x64_sys_getpid (less is better)
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As expected, the native solution implemented in hardware and microcode on
Intel outperforms our retrofitted software solution for AMD. However, both in
terms of overhead and absolute execution time, the approaches are within one
order of magnitude of each other. The overhead of this mechanism is around 2.6
times higher on AMD than on Intel. In absolute terms, the difference amounts
to a factor of 1.9. The error of our measurement was below 10% in both cases.

A limitation of this measurement is the jointness of the breakpoint and single-
stepping mechanism. Hence, it is not evident if the difference we observe can be
attributed entirely to the single-stepping or if the breakpoint implementation
exhibits some overhead caused by architectural differences. However, we still
argue for this way of determining the performance as it is closest to real-world
applications of the proposed mechanism.

UnixBench. The initial microbenchmark focused on assessing the worst-case
scenario for VMI. It involved a loop executing a lightweight system call, getpid,
which merely returns the process’s PID and has minimal execution time. VMI
introduced a trap to the monitoring application in each iteration. To provide a
more realistic understanding of VMI’s impact on the performance of a target
VM, we conducted additional tests using selected system calls traced during the
execution of various UnixBench [3].

Table 1 lists the results obtained from these tests. The performance figures
indicate the number of iterations completed within a fixed time interval. The
spawn test repeatedly invoked the clone system call, and the execl test invoked
the execl function, which translates to the execve system call. Despite tracing
each system call invocation in these tests, due to the higher execution time of the
system calls itself, the relative overhead imposed by VMI was significantly lower.
The syscall (system call overhead) test resembled our microbenchmark and pro-
duced similar results. The pipe throughput test focuses on communication via
a pipe, and we traced all write system calls during the test, with significant
overhead. Lastly, the pipe-based context switching test context1 is “more like a
real-world application” [3] and measures switches between two processes engaged
in a bidirectional pipe conversation. When tracing the pipe system call, which
is called only once at the beginning, no noticeable overhead was observed. We
omitted the DhryStone and WhetStone, as they do not use system calls, and thus
their runtime performance is not influenced by VMI-based system call tracing.

Table 1. Consolidated UnixBench scores on AMD64 (higher is better)

Test
Monitored
Syscall

w/o VMI w/ VMI Unit

spawn sys_clone 18,050 (±475) 3,548 (±817) processes/s
execl sys_execve 5,168 (±101) 1,880 (±553) calls/s
syscall sys_getpid 17,758,288 (±339,741) 7,435 (±911) calls/s
pipe sys_write 2,639,602 (±49,713) 7,472 (±1,057) calls/s
context1 sys_pipe 259,947 (±1,272) 261,195 (±3,612) calls/s
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6 Summary

In this paper, we have identified the causes of the limited availability of active
introspection mechanisms on AMD x86 processors impacting many introspection
applications and remedied some of the more pressing concerns. Thus, we have
improved the state of the art of VMI-based approaches and enabled their use on
previously inaccessible systems.

First, we have highlighted two architectural differences that affect the imple-
mentation of introspection tools and the applicability of previous research. Active
mechanisms such as hyper-breakpoints often use SLAT-based controls and events
to realize code hiding. However, the specific implementation of SLAT with AMD
RVI does not allow to set read and execute permissions independently. Hence,
we cannot use the usual code-hiding technique. Previous research has proposed
alternative approaches, which rely on the availability of hyper-single-stepping.
Yet, due to the missing support of the monitor trap flag on AMD processors,
these approaches have not been realized for introspection-based solutions.

Second, we have focused on remedying this lack of hyper-single-stepping with
our guided single-stepping approach. Instead of relying on hardware support
through the Monitor Trap Flag, we retrofit the capabilities using software and
interception intercepting. We guide the execution of the guest from the hypervi-
sor and the introspection application to ensure the correctness and stealthiness
of the monitoring.

Third, we have implemented the approach of guided single-stepping in the
KVM hypervisor and the LibVMI introspection library. The evaluation of this
novel software-based approach demonstrates that its performance is in the same
order of magnitude as comparable hardware implementations on Intel proces-
sors. Hence, we claim that our solution increases the portability of introspection
applications for AMD processors.

Finally, we release our proof-of-concept implementation as free software and
work towards integrating it into the relevant open-source projects.
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