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Abstract. Secure Shell (SSH) is a preferred target for attacks, as it is
frequently used with password-based authentication, and weak passwords
can be easily exploited using brute-force attacks. To learn more about ad-
versaries, we can use a honeypot that provides information about attack
and exploitation methods. The problem of current honeypot implemen-
tations is that attackers can easily detect that they are interacting with
a honeypot and stop their activities immediately. Moreover, there is no
freely available high-interaction SSH honeypot that provides in-depth
tracing of attacks.
In this paper, we introduce Sarracenia, a virtual high-interaction SSH
honeypot which improves the stealthiness of monitoring by using virtual
machine introspection (VMI) based tracing. We discuss the design of the
system and how to extract valuable information such as user credential,
executed commands, and file changes.
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1 Introduction

A Honeypot is a system that aims at gathering knowledge about attacks by
luring the adversaries to attack it [17, 13]. One challenge of honeypots is to
ensure stealthy and reliable extraction of useful information that is not
directly noticeable to an adversary in order to learn more about honeypot-
aware attacks. This means that an adversary first checks if he is attacking a
real system and only runs the full attack when he is sure not to be connected to
a honeypot [25, 19, 38].

There are two kinds of honeypots that can gather in-depth traces of an attack:
the high-interaction and the medium- interaction honeypots. A high-interaction
honeypots monitor a real system either by installing a Man-in-The-Middle proxy
that captures the SSH session [30, 35], or by tracing the execution using an in-
guest agent, such as a kernel modules. A proxy-based approach provides a high
level of stealthiness, however, it lacks the ability to reconstruct the full attack
e.g., when additional binaries are downloaded and deleted directly after the
execution, or when additional encrypted communication channels besides SSH
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are used which can not be decrypted by an SSH proxy. In-guest agents can
provide in-depth tracing of the attack, but they can be detected, or disabled. To
the best of our knowledge, there is no in-guest agent based SSH high-interaction
honeypot.

Emulation is another commonly used approach for medium, or low-
interaction honeypot. Emulation means that the honeypot provides a service
that is similar to the expected one. Cowrie [23] is the most commonly used SSH
honeypot and emulates the behavior of an SSH server and Debian operating
system, which means that a user can log in to a system but all commands are
emulated, i.e., only log the execution of the command but do not really have any
other functionality. Because of this, it is pretty easy for an attacker to detect
whether a system is an emulated honeypot, or a real system.

To sum up, the problem with current SSH honeypot solutions is that they
are either easy to detect, or do not provide in-depth tracing to reconstruct full
attacks.

Virtual Machine Introspection (VMI) is the process of examining and moni-
toring a virtual machine (VM) from the outside, i.e., the virtual machine monitor
(VMM) point of view. VMI has proven to be effective in monitoring activities of
a VM without the presence of an in-guest agent either by using system call trac-
ing [24, 10, 7], or memory-based introspection [29, 8, 32, 11]. In the past, it has
been shown that, compared to in-guest agents, VMI has several advantages in
intrusion detection systems (IDS) [10] and monitoring of virtual honeypots [22,
15, 27].

This paper introduces Sarracenia, a virtual high-interaction SSH hon-
eypot based on VMI which combine system call and user-space function tracing.
This approach produces less overhead than tracing just system calls to extract
information. The contributions of this paper are:

– The design and implementation of a VMI-based high-interaction SSH honey-
pot architecture that provides in-depth traces of attacks including executed
commands, session replay, a list of manipulated and downloaded files includ-
ing their content and the traffic of forwarded connections.

– Tracing mechanism that can be used to build another honeypot, malware
tracing, or IDS system.

– To tackle the problem of honeypot-aware attacks, we employ well-known
VMI-based tracing techniques of libvmi [24] and Drakvuf [21] in order to
achieve a better level of stealthiness and to trace the execution of user-space
function calls.

– The performance evaluation that measures the overhead added by VMI-
based tracing.

Our performance evaluation shows that Sarracenia can match the perfor-
mance of a normal SSH server with a small increase in execution time (approx-
imately 0.01 s) when used to trace simple activities.

When we monitor the file system changes, the execution time of the honeypot
increases by at least 0.08 s based on how many files are generated and extracted.
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Table 1. Comparison of SSH honeypots, a full circle represents for is supported or
high performance and an empty one for the opposite.

2 Related Work

This section reviews different approaches and related work concerning SSH hon-
eypots and their analysis as well as tracing techniques.

2.1 SSH Honeypots

The subsequent sections discuss different approaches for SSH honeypots. Table 1
summarizes the differences between them and Sarracenia and also shows which
features are supported by each approach.

Low-Interaction Kojoney [6] is a low-interaction honeypot (developed by Jose
Antonio Coret) that emulates an SSH server. Emulation means that it imitates
the behavior of a real SSH service which means that not all functionalities of the
real SSH are available. Kojoney logs the username and password combination,
executed commands and terminal window size. The advantage of emulation is
that it can run mostly isolated (the honeypot process can run with restricted
user permissions) and lessens the chance that the adversaries can take over the
entire host. The disadvantage of this approach is that only a limited number
of shell commands are available, which means that scripts of adversaries might
fail or adversaries would leave the system without doing any further malicious
activities.

Medium-Interaction Cowrie [23] (former: Kippo [31]) is a medium-interaction
honeypot which also emulates an SSH server just like low-interaction but it
adds fake Debian system which also emulated. The drawback is that not all the
commands work the same way as in a real system because each command is re-
implemented and does not provide full functionality. The file changes detection
and extraction in Cowrie supports only selected commands such as wget, curl
and sftp/scp. It also supports port forwarding, but instead of forwarding it to
the real destination, it needs to be configured where to forward the data to e.g.,
forwarding SMTP connection to an SMTP honeypot.
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High-Interaction SSHHiPot [30] and sshmitm [35] are a high-interaction SSH
honeypot that implement the concept of an active Man-in-The-Middle (MiTM)
proxy between the adversary and the SSH server.

The advantage of a MiTM approach is that all shell commands can be used
by the adversaries, so more information about the adversaries’ activities that
happen inside the VM (high-interaction) can be extracted and since no agent
inside is involved, it is difficult for the adversary to detect the monitoring.

The disadvantage of this approach is that it fails at detecting changes to the
file system, i.e., it cannot restore files that have been transferred via an additional
encrypted network communication channel such as https. Thus, it might not be
possible to analyze the actual malware sample of an attack.

High-interaction honeypot suffers the problem of finding a compromise be-
tween restraining the network access to the other systems in order to protect
and not contributing to further attacks and analyzing the full behavior of on-
going attacks. The goal of Honeywall [9, 28] is to control the network usage of
the successful attacks [4] by acting as a network bridge gateway of all honeypots
where the network activities are logged and iptables is used to apply network
rules that limit the network access.

There are some researches that focus on how to detect the presence of a
honeypot, or introspection system called anti honeypot [37] and introspection
detection [36]. For high-interaction honeypots, there are two main methods which
are: system level fingerprinting and operational analysis. One way to do system
level fingerprinting is by timing benchmark [12] which calculates the execution
time of commands. If the time is longer than on a sane system, it means that a
monitoring, or introspection system might be present. Operational analysis can
be done by executing several commands and compare the generated output of
the remote server with a sane system [38].

2.2 VMI-based honeypots and tracing method

VMI-Based Tracing A VMI-based IDS [10] introduced by Garfinkel et al.
They added hooks that analyzed and observed VM CPU, memory, and emulated
devices in order to reconstruct the VM state. Using this same approach, Jiang
et al. [16] developed VMwatcher that is able to implement hooks into several
hypervisors to extract the memory and file system of a VM. The acquired data
is exported to a separate VM where the memory is compared to a clean-state
template and the file system is scanned by an anti-virus software.

Lengyel et al. [22] implemented a hybrid honeypot architecture that combines
a low-interaction honeypot to collect malware and a high-interaction honeypot
(sandbox) to analyze the captured malware. By monitoring the sandbox VM
using VMI, they were able to record all activities of the malware. To detect
anomalies, their system compared the result that obtained by the VMI against
the clean original state of the VM. Sarracenia uses the similar approach, but we
provide more API to do user-space function tracing that can be used to build
another honeypot, or an IDS system.
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We made a preliminary research on VMI based SSH honeypot [27]. We traced
write and read system call to extract the username and the password. The
method was effective, but not efficient since the overhead was pretty high and
pattern matching also needs to be done.

Kernel Module Monitoring Block and Dewald [2] described how to monitor
and extract information from the heap memory. They built plug-ins for Rekall [5]
that are able to extract command history from zsh and password entry informa-
tion from a password manager called KeePassX.

Taint Analysis Portokalidis et al. [26] built a honeypot system based on taint
analysis using QEMU. It works by tagging the data that comes from an unsafe
source and track the activities of the data. When a violation is detected, an
alarm is raised and deeper inspection is made. Portokalidis et al. [25] introduced
Eudaemon, a technique that analyzes a running process in an emulator which
provides extensive instrumentation in the form of taint analysis. Bosman et al. [3]
introduced Minemu, a fast x86 taint tracker that address the problem of dynamic
taint analysis which is high overhead.

3 System Architecture and Design

This section discusses the goals of Sarracenia, its architecture and components.

3.1 Goal

The goal of Sarracenia is to provide a virtual high-interaction honeypot that
aims at attracting adversaries that would normally leave a honeypot when they
detect that it is not a real system, in order to understand new attacks. Thus,
stealthy and reliable monitoring is required in order to reconstruct an attack
as accurately as possible. To achieve that, we capture all modifications and
interactions of an adversary with the system under analysis. Sarracenia traces
these actions of an adversary:

1. Entered and executed commands in order to replay the SSH session.

2. Rebuild files that have been transferred via scp/sftp.

3. File system changes to extract malware samples that have been loaded
over encrypted channels such as https.

4. Monitor port forwarding of the SSH server where the destination address
and the payload are extracted.
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Fig. 1. Sarracenia’s component.

3.2 Components

The Sarracenia architecture uses two types of virtual machines. One virtual
machine is the honeypot and the other one monitors the honeypot as shown in
Figure 1.

We downloaded the OpenSSH’s debugging symbol that match the honeypot’s
version (OpenSSH 7.2p2 Ubuntu-4ubuntu2.4, OpenSSL 1.0.2g 1 Mar 2016). We
were able to extract the debugging information using libdwarfparser [18] and
libelf in order to get the symbols and the layout of the required data structures.
To avoid tracing problems coming from concurrency, the honeypot has only one
CPU. The monitoring VM is a normal Debian installation with tracing tools
installed. Both virtual machines are running on top of Xen.

The VMI access required from one VM to another VM is granted by us-
ing policies of the Xen security modules (XSM). It controls the access of Xen
domains, hypervisor, and resources including memory and devices. We imple-
mented policies so that a monitoring VM can access the memory of a honeypot
but not vice versa. This concept is described by the CloudPhylactor [33] archi-
tecture.

3.3 Tracing Methods

In order to trace the control flow during an attack, we use VMI-based trac-
ing. The main challenges of Sarracenia are: bridging the semantic gap e.g., to
trace the user-space SSH daemon then extract the required information and low
overhead e.g., the monitoring mechanism not impacting the performance of the
honeypot which could be detected by an adversary. For low-level VMI function-
ality, we use LibVMI in conjunction with a self-written library [34] that simplifies
the insertion and processing of software breakpoints.

The performance impact of tracing is mainly caused by context switches
between the monitoring VM and the honeypot VM whenever information needs
to be extracted, e.g., the user credentials during the authentication process.
Thus, one goal of Sarracenia is to identify the best place in the control flow to
extract the required data to minimize VM context switches.

The challenges associated with the semantic gap differ in these scenarios.
In the case of monitoring only the read system call, we need to determine the
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call which, e.g., reads the password from the remote console and differentiate it
from the rest of the read calls. However, by monitoring the validation function we
have to know the symbol name of the function and where it is located in memory
so that we can intercept it. Additionally, we need to know the parameters and
also the layout of the data structures which can be extracted easily from the
debugging information of a binary file.

To intercept the control flow of the honeypot we use software breakpoints
there are two ways to do it:

Pure INT3: It replaces the original opcode at the beginning of a function
with the INT3 instruction, which causes an interrupt that is handled by the
monitor. INT3 approach is simpler but suffers an important problem which
is the race condition when multiple vCPUs are used.

Xen altp2m [20]: It creates two additional memory after the guest’s physical
memory which contains shadow copy of the target page with the trap and
empty page. Then, it sets an access permission for the shadow page. When-
ever there is access violation e.g., execute attempt, it can simply change the
pointer back to the original page, single step and change the pointer back to
the shadow copy. When an adversary tries to read or write the shadow copy,
it will change the pointer to the empty page. Thus, it conceals the break-
point well. The advantage of this approach is it works nicely with multiple
vCPUs. This approach also used by Drakvuf [21] which we used it for Sar-
racenia since it provides straightforward API to attach a breakpoint. But, it
turns out that we able to detect the presence of Drakvuf by using ioremap
function where we probe the memory beyond the physical range. Drakvuf’s
implementation problems and the fixes are:
– The empty page consists of 00 (zero) where the real behavior according

to Intel Documentation [14] is that attempt to read the invalid memory
address (e.g., outside the physical range) will return all 1s (FF). We
fixed this issue by replacing the 00 with FF during the empty page
initialization process.

– The empty page is not protected by access control and write attempt
will be persistent. But, based on Intel documentation, write attempt
of invalid memory address will be ignored. We fixed this issue by add
access permission of the empty page and the shadow page. When write
is executed, the system notifies Xen to emulate the writing process and
return the emulation result. Thus, the value never get written to the
memory.

Sarracenia implements two modes of operation for the tracing with different
overhead:

Process-bound: Breakpoints on system calls are attached and detached dy-
namically based on the process that is running. To do this, we monitor write
access to the CR3 register that holds the addresses of the page directory
base (PDB) — the data structure which is used by the memory manage-
ment unit for address translation — which is different for each process with
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Fig. 2. Control flow for new SSH connections (left: system-wide right: process-bound).

LibVMI. Whenever a new process is dispatched, the content of this register
is updated with the PDB of the next process. Thus, we can control that a
specific process is monitored. This requires a VM context switch at every
process change in order to check whether breakpoints should be set or not.
Additionally, the breakpoints must be written to memory or removed with
the original instruction if the new process should be monitored or not.

System-wide: All breakpoints are set from the beginning when the monitoring
is started which means that all processes are traced. This does not require a
context switch for every process change. However, it results in more context
switches for system calls at run-time.

4 Data Acquisition

In order to analyze the activities of an adversary, we can use different levels
of tracing with various amounts of information. In general, Sarracenia aims
at capturing the same information as Cowrie, which is: (1) Detection of new
SSH connections, (2) extraction of user credentials, source IP address and port,
session keys of an authentication process, (3) reconstruction of SSH sessions,
e.g., entered commands, (4) data of TCP port forwarding and (5) modification
of file system changes. Table 2 shows the traced function and system call for each
information extraction. In the subsequent sections, we describe how we extract
this data in detail.

4.1 New SSH Connection

In order to detect new connections to the honeypot, we monitor the clone system
call as shown in Figure 2. OpenSSH invokes clone to create a child process that
handles each SSH session. When the session terminates, sys exit group is invoked.
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Name 1 2 3 4 5

clone 3

sys exit group 3

exec 3

write 3

seek 3

System
Call

close 3

kex derive keys 3

auth password 3

sshbuf get u8 3 3

ssh packet send2 wrapped 3 3

Function

channel connect to port 3

Table 2. Function and system calls that are traced for (1) Detection of new SSH
connections, (2) extraction of user credentials, source IP address and port, session keys
of an authentication process, (3) reconstruction of SSH session, i.e., entered commands,
(4) data of TCP port forwarding, and (5) modification of file system

4.2 SSH Key Derivation, Source IP Address and Port Monitor

At the beginning of each SSH session, the key material is negotiated. To ex-
tract the SSH session keys, source IP address and port number, two OpenSSH
functions are traced: kex derive keys and do authentication2. From the input pa-
rameter of kex derive keys, the hash h and the shared secret K can be extracted.
In this step, the memory address of the ssh struct which used to store the session
keys is stored. When do authentication2 is called, the input parameter of this
function holds information about the IP and port (remote and local) where the
remote IP can be collected to get the overview of the adversary’s location. At
this state, the authentication method is about to begin which means that the
session keys are already derived and can be extracted by accessing the memory
address of the ssh struct that was stored before.

4.3 Authentication Phase Monitor

The username and password of an authentication attempt can be extracted
from the input parameters of the function auth password. To accept multiple
passwords for a username, we modify the return value of the function by setting a
breakpoint to the instruction where the function returns to. Instead of returning
1 for the correct password and 0 for the incorrect password, we inject 1 to make
all passwords that are typed by the adversary to be accepted as long as the user
exists in the VM.

4.4 SSH Packet Monitor

Each SSH packet is encrypted during transmission via the network. In order
to extract the content of an SSH packet, we monitor two functions: ssh packet
send2 wrapped and sshbuf get u8 which responsible for the encryption and de-
cryption process of the SSH network packet.



10 S. Sentanoe et al.

4.5 SSH Session Monitor (Keystrokes)

In order to reconstruct an SSH session, we monitor the function ssh packet
send2 wrapped and extract the data section of the packet that contains the
keystroke. The keystrokes are stored in a JSON formatted file, which can be
replayed using asciinema.

4.6 Executed Command

To obtain the executed commands, the exec system call is traced. By tracing
exec, we are able to get an overview of which commands are executed during
an attack. Additionally, this is required to trace commands that are executed
inline, i.e., that are not executed in an SSH bash and thus are not recorded by
the SSH session monitor.

4.7 Port Forwarding

To extract the network packets which are forwarded by the SSH daemon, Sar-
racenia monitors the channel connect to port function. The target IP and port
can be extracted from the function parameters. The payload itself can be ex-
tracted from the SSH packet that explained in Section 4.4.

4.8 Changes on File System

In many cases, an adversary downloads additional malicious code from external
sources. These files can be important when it comes to analyzing the attack.
As there are several ways to download data (sftp, wget, curl, ...) Sarracenia
uses the general approach of monitoring changes to the file system which works
with different applications. Since adversaries might delete the file directly after
executing it, it might not be possible to analyze the disk image after the at-
tack. Thus, Sarracenia monitors changes to the file system and writes them into
separate files.

To achieve that, Sarracenia monitors write, seek and close system calls. By
keeping track of the file descriptor in the process namespace, whenever write
is invoked by the same process, the data that is about to be written to that
particular file can be extracted. When close is invoked by that process, we stop
the tracking of a particular file descriptor.

Since monitoring this three systems calls is expensive as they are used by
many processes, we evaluate in Section 5 different approaches to minimize the
impact by using dynamic tracing, e.g., only monitoring these system calls for a
small set of processes.

5 Evaluation and Discussion

The performance of the monitoring is an important aspect for a honeypot since
it can lower the stealthiness. Thus, this section discusses the performance of
Sarracenia.
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Fig. 3. Function tracing overhead (auth password): (1) without tracing, (2) with trac-
ing - only extracting function parameters, (3) with tracing - setting a second breakpoint
to the end of the function to extract the return value and (4) with tracing - setting
a second breakpoint and modified the return value. Left: Using INT3 and right: using
altp2m.

5.1 Performance Analysis

Function Tracing Overhead To quantify the performance impact of VMI
based control flow interception we measured the overhead of tracing one function
call. Therefore, we called the function auth password for 100 times and calcu-
lated the average runtime without (1) and with tracing (2-4). We distinguish
between three different tracing variants: (2) extracting function parameters at
the beginning of the function, (3) setting the second breakpoint to the end of
the function to extract the return value, and (4) modifying the return value by
writing to the RAX register. The results of the measurements are depicted in
Figure 3.

Without any monitoring, it took 2.49ms. When pure INT3 is used, it took
2.82ms for (2), which is an increase by 0.33ms. When we add another break-
point to intercept the return value (to accept all given password), it took 3.88ms
(increased by 1.39ms) and 3.92ms (increased by 1.43ms) for (4). The measure-
ments show that tracing increases the runtime of a process with small amount
of overhead. But, it is still important to intercept the control flow as little as
possible to minimize the overhead.

When altp2m is used, it took 2.60ms, 3.70ms and 3.73ms which is an increase
by 0.11ms, 1.21ms, and 1.24ms for (2), (3), and (4) respectively.

System Performance To measure the performance of Sarracenia’s monitoring
approach on the honeypot, we ran four use cases. For each use case, we used
time command and used the real time:

A. Simple command: Execute ls -alh command.
B. I/O intensive test: Download a file with 2MB size using wget command.
C. I/O and CPU intensive test: Compile the Jansson library.
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Fig. 4. Overhead of client’s execution time based on different scenario and configura-
tion where (1) is without monitoring as the baseline and (2) to (4) are monitored by
Sarracenia using pure INT3 (first row) and altp2m (second row).

To measure the impact on the performance of the honeypot for each tracing
mechanism, we run the four use cases with different configurations:

1 Without tracing: The baseline to calculate the overhead of the tracing
mechanism.

2 System-wide tracing - SSH functionalities: sys clone, sys exit group,
and all OpenSSH functions are monitored.

3 Process-bound tracing (whitelist) - with file change detection: all
system calls of OpenSSH functions are monitored. And, wget, curl, sftp and
scp are monitored for file system changes.

4 System-wide tracing - with file change detection: all system calls and
OpenSSH functions (see Table 2) are monitored.

We ran every combination of use-case and tracing mechanism 100 times. The
summary of time measurement is depicted in Figure 4. The overhead is between
0.01 s and 9.93 s. For activity (A), the overhead of all approaches was relatively
small (min: 0 s max: 0.13 s). For activity (B), the overhead start to be varied
but still can be considered small since it started to do data extraction from the
memory (min: 0.01 s max: 0.62 s). For activity (C), the overhead started to be
high since more kinds of stuff are happening in the honeypot and more data are
extracted (min: 1.03 s max: 9.93 s).

Process-bound suffered the highest overhead due to the attachment and de-
tachment of a breakpoint process that increased the overhead which also depends
on how many processes that causes interrupt. To attach a breakpoint using pure
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INT3 took 0.19ms and 0.40ms when altp2m is used. To detach a breakpoint
it took 0.15ms and 0.11ms when pure INT3 and altp2m is used respectively.
But, during runtime, altp2m approach can simply switch the page table pointer
instead of removing the INT3 opcode.

Based on the overall result, we recommend using altp2m and system-wide
tracing with file change detection approach for real-life deployment.

5.2 Stealthiness

As explained in Section 2.1, there are at least three approaches to detect whether
a system is a honeypot or being monitored: operational analysis (execute ar-
bitrary commands), system level fingerprinting (timing benchmark), detecting
monitoring agent. We tested these approaches against Sarracenia and Cowrie.
Since Sarracenia provides a fully fledged Linux system an attacker can execute
and install any required tools. Thus, he can not see any difference to a nor-
mal system in contrast to Cowrie which only provides some limited amount of
commands.

As discussed in Section 5.1 the overhead added to a single monitored function
call can be between 0.11ms and 1.43ms which can be used to detect the presence
of the introspection. This becomes noticeable when the same (monitored) system
call is invoked multiple times and the timing of an untraced system is known.
Reducing the impact of VMI-based tracing mechanisms is an ongoing research
topic and reducing it to improve the stealthiness must be addressed in future
work. Nevertheless, to the best of our knowledge when virtualization, e.g., in
cloud computing, is used it is common that functions are delayed since several
virtual machines share the same resources.

Sarracenia does not require any agent inside the honeypot. Thus, an adver-
sary is not able to directly detect any monitoring component.

5.3 Portability

Since we have to bridge the semantic gap and interpret the contents of memory
from the honeypot, it is important to discuss the portability of this approach,
i.e., whether the approach will work in newer versions of a Linux system or SSH
service. Sarracenia relies on the information we get from the System.map (func-
tion symbols of system calls) and the debugging information of the SSH daemon.
Since the honeypot virtual machine is under our control, both information can
be easily accessed or generated when the system is upgraded. Sarracenia is able
to run on a standard Xen installation where Intel hardware virtualization is
required.

5.4 Limitations

Sarracenia aims at extracting information from a virtual machine with VMI.
Thus, it is vulnerable to adversaries that produce a great number of outputs,
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e.g., write a lot of data to files which are logged. This problem could be addressed
for examples by a maximum log size for each adversary. We also do not cover
attacks that target that SSH service, e.g., with buffer overflows. Then, we assume
that adversaries do not do the timing based measurement. In the future, we need
to discuss whether the timing behavior of intercepted functions can be used to
detect VMI based monitoring especially in cloud environments where several
virtual machines coexist on the same physical server. Lastly, we do not address
the problem of attackers that revisit our honeypot and detect that it has been
reset after a long period of time. This is a general problem of honeypots and is
out of the scope of this paper. Finally, we do not consider attacks that actively
put crafted data to main memory that subvert VMI based memory analysis [1].

6 Conclusion

In this paper, we presented Sarracenia, a VMI-based virtual high-interaction
SSH honeypot. We explained the architectural design of it and compared it
against several state-of-the-art approaches such as SSH emulation, Man-in-the-
Middle, and custom SSH implementation. Sarracenia’s mechanism can be used
to build another honeypot, malware tracing, and Intrusion Detection System.

Compared with other SSH honeypots, Sarracenia improves the stealthiness of
the monitoring by applying VMI-based tracing and by providing a fully-fledged
Linux system to an attacker. Sarracenia is able to extract useful information
such as user’s credentials, keystrokes, executed commands and changes on the
file system including files that transferred over encrypted network channels and
have been deleted after the execution.

Sarracenia’s performance varies depending on which tracing modules are en-
abled. Since one approach to detecting the presence of an analysis tools, is to
check the timing behavior of a system, the stealthiness of VMI based tracing
depends on the implementation of the interception mechanism, e.g., the break-
points. Thus, minimizing the performance impact of each single breakpoints is
an important objective of future VMI research.

To assess the effectiveness level of Sarracenia, long-term deployment and
analysis of Sarracenia and other SSH honeypots are needed and it is the future
work of this research.
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